skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christianson, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This dataset includes chlorophyll-a concentrations, periphyton biomass estimates, water quality measurements, and qualitative observations from a large-scale mesocosm experiment conducted in the Green Lakes Watershed, Colorado. The experiment was designed to test how earlier lake ice-off and increased dissolved organic material (DOM), associated with terrestrial plant encroachment in alpine watersheds, interactively influence aquatic food webs. In fall 2019, twenty 2600L “megacosms” were established at Sandy Corner (3300 m ASL; 40.042289, -105.584006), left to fill with snowmelt, and maintained throughout the 2020 open water season. The experiment followed a 2 × 2 randomized block design manipulating ice-off timing (via black vs. beige tank coloration) and DOM inputs (presence/absence of willow leaf packs), with five replicates per treatment. All tanks were seeded with sediments and zooplankton from both alpine and montane lakes (Green Lake 1 and Green Lake 4), and instrumented with thermistors recording surface and hypolimnion temperature every two hours year-round. Periphyton growth was monitored using clay tiles, sampled across five time points. Chlorophyll-a concentrations were extracted from filtered water samples and analyzed spectrophotometrically. Periphyton biomass was estimated via ash-free dry mass (AFDM) determinations, based on the mass lost on combustion of material scraped from tiles. Water quality was measured 1–2 times weekly using a YSI ProPlus multiprobe and Li-Cor quantum sensor, and snow/ice cover was qualitatively assessed monthly during winter. 
    more » « less
  2. This dataset contains temperature data from two Onset HOBO temperature pendant loggers installed in Green Lake 4’s inlet and outlet from summer 2019. High-resolution water quality data are fundamental to observing rapid ecological responses to meteorology, climate, and other disturbance events. The inlet and outlet temperature data collected here, together with Niwot Ridge’s buoy deployed in Green Lake 4, allow us to understand lake hydrology, water budget, and stratification and mixing dynamics that drive seasonal in-lake processes to understand effects of warming. 
    more » « less
  3. null (Ed.)
  4. Beisner, Beatrix E (Ed.)
    Abstract The prolonged ice cover inherent to alpine lakes incurs unique challenges for aquatic life, which are compounded by recent shifts in the timing and duration of ice cover. To understand the responses of alpine zooplankton, we analyzed a decade (2009–2019) of open-water samples of Daphnia pulicaria and Hesperodiaptomus shoshone for growth, reproduction and ultraviolet radiation tolerance. Due to reproductive differences between taxa, we expected clonal cladocerans to exhibit a more rapid response to ice-cover changes relative to copepods dependent on sexual reproduction. For D. pulicaria, biomass and melanization were lowest after ice clearance and increased through summer, whereas fecundity was highest shortly after ice-off. For H. shoshone, biomass and fecundity peaked later but were generally less variable through time. Among years, ice clearance date varied by 49 days; years with earlier ice-out and a longer growing season supported higher D. pulicaria biomass and clutch sizes along with greater H. shoshone fecundity. While these large-bodied, stress tolerant zooplankton taxa were relatively resilient to phenological shifts during the observation period, continued losses of ice cover may create unfavorably warm conditions and facilitate invasion by montane species, emphasizing the value of long-term data in assessing future changes to these sensitive ecosystems. 
    more » « less
  5. Abstract. Empirical evidence demonstrates that lakes and reservoirs are warming acrossthe globe. Consequently, there is an increased need to project futurechanges in lake thermal structure and resulting changes in lakebiogeochemistry in order to plan for the likely impacts. Previous studies ofthe impacts of climate change on lakes have often relied on a single modelforced with limited scenario-driven projections of future climate for arelatively small number of lakes. As a result, our understanding of theeffects of climate change on lakes is fragmentary, based on scatteredstudies using different data sources and modelling protocols, and mainlyfocused on individual lakes or lake regions. This has precludedidentification of the main impacts of climate change on lakes at global andregional scales and has likely contributed to the lack of lake water qualityconsiderations in policy-relevant documents, such as the Assessment Reportsof the Intergovernmental Panel on Climate Change (IPCC). Here, we describe asimulation protocol developed by the Lake Sector of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP) for simulating climate changeimpacts on lakes using an ensemble of lake models and climate changescenarios for ISIMIP phases 2 and 3. The protocol prescribes lakesimulations driven by climate forcing from gridded observations anddifferent Earth system models under various representative greenhouse gasconcentration pathways (RCPs), all consistently bias-corrected on a0.5∘ × 0.5∘ global grid. In ISIMIP phase 2, 11 lakemodels were forced with these data to project the thermal structure of 62well-studied lakes where data were available for calibration underhistorical conditions, and using uncalibrated models for 17 500 lakesdefined for all global grid cells containing lakes. In ISIMIP phase 3, thisapproach was expanded to consider more lakes, more models, and moreprocesses. The ISIMIP Lake Sector is the largest international effort toproject future water temperature, thermal structure, and ice phenology oflakes at local and global scales and paves the way for future simulations ofthe impacts of climate change on water quality and biogeochemistry in lakes. 
    more » « less